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Nonequilibrium structures in reacting fluids subject to external forces
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It is shown that a reacting fluid under the action of external forces can develop nonequilibrium
stationary structures. The main difference between these nonequilibrium states and the hydrostatic
one is the appearance of a velocity field that drives the fluid from the zones where particles are
created by reactions to the regions where they annihilate. Although this mechanism is derived here
for a perfect fluid subject to gravity, within a particular reaction model and a partial-linearization
scheme, the results are reasonably expected to hold in more general situations.
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The interplay of reaction and transport processes in
physical systems has been the subject of a considerable
amount of work in the last years (see Ref. [1] and refer-
ences therein). This has been motivated by the interest of
such phenomena in many applications [2,3], but it is also
due to the paradigmatic role that those systems play as
models of complex behavior [4]. In this sense, spatially
extended reacting systems are also of interest in other
areas of science, such as biology [5] or economics [6].

Although most of the research in this field has been fo-
cused on the study of reacting and diffusing systems, al-
ternative transport mechanisms—other than diffusion—
are worth considering. In fact, turbulent or convective
transport could be dominant in many situations [3,5]. In
Ref. [7] a model has been introduced to study the mutual
effect of reaction and transport in a perfect fluid. Follow-
ing the lines used to derive reaction-diffusion equations,
the proposed model equations for a reacting perfect gas
at constant temperature 7' are a straightforward exten-
sion of Euler equations (8],

On+ V - (nu) = F(n),

(1)
Gu+ (u-V)u=-Vp/p—yu+f/m,

where n(r,t), u(r,t), and p(r,t) are the number density,
velocity, and pressure fields, respectively. Here p = mn
is the mass density, with m the mass of a fluid particle,
and f(r) is the external force per particle. It is supposed
that this external force can be derived from a potential,
f = —VV. The nonlinear source term F(n) in the den-
sity equation accounts for reaction processes, which are
considered to have no effect on the velocity or the tem-
perature. Generally, these reactions take place between
the particles of the fluid and with a particle background,
which is not supposed to be affected by the dynamics of
the fluid [9]. Finally, the term —~u in the velocity equa-
tion stands for the dissipative effects of the background.

In the absence of reactions, F'(n) = 0, the stationary
solution to Egs. (1) is the usual hydrostatic state, where
the pressure gradient balances the external forces and
u = 0. Supposing that the pressure of the perfect fluid
is given by the ideal gas equation of state, p = nkT (k
being the Boltzmann constant) the hydrostatic density
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ny is given by the equilibrium thermodynamics formula

na (1) = mo exp | - =) (2)

where no is an arbitrary constant related to the total
particle number.

How do reaction processes modify this hydrostatic
state? In order to answer this question, which is the
main goal of this paper, one must look for the time-
independent solutions to the full reaction-convection
equations (1). In order to simplify the mathematical
problem, one-dimensional problems will be considered as
a first step. They correspond to the case when the exter-
nal force is directed along a single spatial coordinate and
depends on that coordinate only—such as the gravita-
tional or the centrifugal forces. Under these conditions,
the stationary state satisfies the equations

d
- (n) = F(n), ®)
and
du_ M dn__ . f()
ud:c T mndz m
_ kT d V(x) _
= [lnn+ FT ] Yu, (4)

where © = u-x%x and f = f-X. From these equations, it is
apparent that, under the effect of reactions, the station-
ary state cannot correspond to the fluid at rest. In fact, if
u = 0, Eq. (3) would imply that the density should equal
one of the roots of F(n) and, in particular, n should not
depend on z. This is in contradiction with Eq. (4) which,
for vanishing velocity, has Eq. (2) as its only solution.
Hence, if a solution to Egs. (3) and (4) does exist, it
would imply that the interplay of reactions and external
forces determine a dynamical stationary state with the
fluid in motion.

Due to their nonlinear character, solving Egs. (3) and
(4) is not trivial at all. In general, it would be necessary
to resort to the use of numerical techniques. However,
much insight on the physical processes that determine
the stationary states can be obtained in an analytical way
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by partially linearizing the equations as follows. Consider
that both n and u differ from their respective hydrostatic
values, ng(z) and ug = 0, in vanishingly small quanti-
ties. Then linearize the equations in the usual way, keep-
ing, however, the full nonlinear character of the reaction
function F(n). This partial linearization—which simpli-
fies the hydrodynamical problem but preserves all the
complexity involved in the reaction processes—produces,
from Eq. (4), an explicit expression for the velocity,

kT d n
vz () ®)

Replacing this in the partially linearized version of
Eq. (3) and taking into account Eq. (2), one obtains for
the density

kT d%n d [f—(a:ln

" ymdz? ' dx | ym

| = o, ©)
This is a stationary inhomogeneous Fokker-Planck equa-
tion [10]. It is interesting to note that if the left-hand side
of the first of Eqs. (1) had contained an additional term
describing diffusion, —DyV?n, it would be simply added
to the left-hand side of Eq. (6), producing an effective
diffusivity D = Do+ kT /ym. Therefore, the analysis can
be trivially extended to consider an additional diffusion
effect. In view of this fact, the coefficient multiplying
the second derivative of n in Eq. (6) will be henceforth
denoted by D.

Remarkably enough—although a linearization has
been performed—the solution to Eq. (6) in the absence
of reactions is again Eq. (2). For nonvanishing F(n),
instead, solving the stationary Fokker-Planck equation is
practically impossible. Even for a linear reaction function
and simple forms of f(z), the solution contains typically
very involved special functions [11]. The analysis will be,
therefore, restricted to the case of a constant external
force that, for the sake of concreteness, is taken as the
gravity force near the Earth surface, f = —mg. Physi-
cally meaningful solutions to the hydrodynamical prob-
lem under the action of a constant force are obtained by
imposing a boundary, the Earth surface, able to compete
with the drifting effect of the force. At that boundary,
situated at = 0, a condition of total reflexion or zero
net flux, v = 0, will be imposed. As for the reaction
function, the Ballast model [12],

F(n) = —% [n — n30(n — n3)], 7)

is considered. Here, 6 is the Heaviside step function. The
Ballast model is a bistable reaction model with stationary
stable states at n; = 0 and n3, separated by the unstable
state nz (0 < n2 < n3). It mimics more complex bistable
models such as Schlogl’s [1]. Its piecewise-linear char-
acter preserves the main ingredients of nonlinearity and
makes possible an analytical treatment. In Eq. (7), 7
is a typical relaxation time associated to reaction events,
which measures the efficiency of reactions.

Under the above mentioned conditions, the solution to
Eq. (6) reads
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nz + Aexp(z/A;+) + Bexp(z/A_) for z < x
n(z) =
C exp(z/A-) for = > z,,

(8)

1 1 11
=k [ 9
o x oVt )

(A= <0< A}) and A\g = 2yD/g. In Eq. (8), z3 is the
point at which n equals the unstable state ny. The coeffi-
cients A, B, C, and z itself must be obtained from con-
tinuity conditions of n and its first derivative at x5, along
with the boundary conditions n(xz;) = n, and »(0) = 0.

Figure 1 shows the normalized density n(z)/n3 as a
function of the scaled coordinate z/)\o, for 7D = 0.5)2,
and n; = 0.22n3. The dotted curve stands for the hy-
drostatic density (2). One can observe that n(z) differs
from ny(z) as expected according to the form of the re-
action function F'(n). In the region where n; < n < ns
(xs < = < z2), F(n) is positive and particles are cre-
ated due to reactions. Approximately in this zone, the
stationary density is overpopulated with respect to the
hydrostatic state. The opposite effect is seen in the zone
where n > nz, which implies F(n) < 0. There the den-
sity is relatively depleted. Note that this is not observed
in the region where n < ny (z > z3), certainly due, as
explained later, by the positive contribution of particles
transported from the left.

The velocity field u(z) is also shown in Fig. 1, mea-
sured in arbitrary units. Note the discontinuity in its
derivative at x,, a consequence of the singularity of
F(n), Eq. (7), at n;. In the region of particle cre-
ation, r3 < = < x3, the velocity changes its sign pass-
ing from negative values to the left to positive values to
the right. Particles situated just above z3 are, therefore,
transported towards the lower region of particle annihi-
lation, < z3. In an analogous way, particles in the

where

3

D = 0.51,°
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FIG. 1. The normalized nonequilibrium density n/n3 as a
function of the scaled coordinate z/Xo, for 7D = 0.5)% and
nz/n3 = 0.22. The dotted curve corresponds to the hydro-
static density. The velocity u(z), measured in arbitrary units,
is also shown.
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creation zone just below z3 move toward the upper anni-
hilation zone, £ > z,. Hence, there is a continuous flow
of particles from the zone where they are created to the
regions in which they are annihilated.

This provides an explanation for the mechanism which
sustains the stationary nonequilibrium density profile in
the presence of reaction processes: the hydrostatic state
breaks up, and a net circulation of fluid arises, driving the
particles created by reactions to the zones where they dis-
appear. Of course, this line of reasoning can be inverted
to consider the effect of external forces on reacting flu-
ids. In the absence of forces, the stationary state of the

fluid is given by v = 0 and F(n) = 0, i.e., n = 0 or
n = ng, a spatially homogeneous density. The presence
of a force, then, generates a velocity field that determines
the density to exhibit a nontrivial profile.

Although these results have been derived under very
particular conditions, one can reasonably conjecture that
the interplay mechanism of reactions and forces explained
above holds in more general situations. Another im-
portant point that deserves further consideration is the
stability of the nonequilibrium states generated by that
interplay. These aspects are the subject of work in
progress.
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